3.1.78 \(\int \frac {(c+d x^2)^{3/2}}{(a+b x^2) \sqrt {e+f x^2}} \, dx\) [78]

Optimal. Leaf size=319 \[ \frac {d x \sqrt {c+d x^2}}{b \sqrt {e+f x^2}}-\frac {d \sqrt {e} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {d \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {c^{3/2} (b c-a d) \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a b \sqrt {d} e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

d*x*(d*x^2+c)^(1/2)/b/(f*x^2+e)^(1/2)-d*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1
+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/b/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)
^(1/2)+d*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/
2))*e^(1/2)*(d*x^2+c)^(1/2)/b/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)+c^(3/2)*(-a*d+b*c)*(1/(1
+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticPi(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),1-b*c/a/d,(1-c*f/d/e)^(1/2))
*(f*x^2+e)^(1/2)/a/b/e/d^(1/2)/(d*x^2+c)^(1/2)/(c*(f*x^2+e)/e/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 319, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {559, 433, 429, 506, 422, 553} \begin {gather*} \frac {c^{3/2} \sqrt {e+f x^2} (b c-a d) \Pi \left (1-\frac {b c}{a d};\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a b \sqrt {d} e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac {d \sqrt {e} \sqrt {c+d x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {d \sqrt {e} \sqrt {c+d x^2} E\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac {d x \sqrt {c+d x^2}}{b \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)^(3/2)/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

(d*x*Sqrt[c + d*x^2])/(b*Sqrt[e + f*x^2]) - (d*Sqrt[e]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]],
1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (d*Sqrt[e]*Sqrt[c + d*x^
2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*S
qrt[e + f*x^2]) + (c^(3/2)*(b*c - a*d)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqrt[c]]
, 1 - (c*f)/(d*e)])/(a*b*Sqrt[d]*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 433

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 553

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[c*(Sqrt[e +
 f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), Ar
cTan[Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 559

Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Dist[d/b, Int[
(c + d*x^2)^(q - 1)*(e + f*x^2)^r, x], x] + Dist[(b*c - a*d)/b, Int[(c + d*x^2)^(q - 1)*((e + f*x^2)^r/(a + b*
x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && GtQ[q, 1]

Rubi steps

\begin {align*} \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right ) \sqrt {e+f x^2}} \, dx &=\frac {d \int \frac {\sqrt {c+d x^2}}{\sqrt {e+f x^2}} \, dx}{b}+\frac {(b c-a d) \int \frac {\sqrt {c+d x^2}}{\left (a+b x^2\right ) \sqrt {e+f x^2}} \, dx}{b}\\ &=\frac {c^{3/2} (b c-a d) \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a b \sqrt {d} e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac {(c d) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{b}+\frac {d^2 \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{b}\\ &=\frac {d x \sqrt {c+d x^2}}{b \sqrt {e+f x^2}}+\frac {d \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {c^{3/2} (b c-a d) \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a b \sqrt {d} e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {(d e) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{b}\\ &=\frac {d x \sqrt {c+d x^2}}{b \sqrt {e+f x^2}}-\frac {d \sqrt {e} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {d \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{b \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {c^{3/2} (b c-a d) \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a b \sqrt {d} e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 3.51, size = 197, normalized size = 0.62 \begin {gather*} -\frac {i \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} \left (a b d^2 e E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-a d (b d e-2 b c f+a d f) F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )+(b c-a d)^2 f \Pi \left (\frac {b c}{a d};i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )\right )}{a b^2 \sqrt {\frac {d}{c}} f \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)^(3/2)/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

((-I)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*(a*b*d^2*e*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - a*d*
(b*d*e - 2*b*c*f + a*d*f)*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + (b*c - a*d)^2*f*EllipticPi[(b*c)/(a
*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*b^2*Sqrt[d/c]*f*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 341, normalized size = 1.07

method result size
default \(\frac {\left (-\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a^{2} d^{2} f +2 \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a b c d f -\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a b \,d^{2} e +\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a b \,d^{2} e +\EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) a^{2} d^{2} f -2 \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) a b c d f +\EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) b^{2} c^{2} f \right ) \sqrt {\frac {f \,x^{2}+e}{e}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}}{a \,b^{2} f \sqrt {-\frac {d}{c}}\, \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right )}\) \(341\)
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (-\frac {d^{2} \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right ) a}{b^{2} \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}+\frac {2 d \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right ) c}{b \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {d^{2} e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{b \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}+\frac {d^{2} e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{b \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}+\frac {a \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) d^{2}}{b^{2} \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {2 \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) c d}{b \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}+\frac {\sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) c^{2}}{a \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(718\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a^2*d^2*f+2*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*c*d*f-El
lipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d^2*e+EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d^2*e+Elliptic
Pi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*a^2*d^2*f-2*EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2
)/(-d/c)^(1/2))*a*b*c*d*f+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b^2*c^2*f)*((f*x^2+e)/e
)^(1/2)*((d*x^2+c)/c)^(1/2)*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/a/b^2/f/(-d/c)^(1/2)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x^{2}\right )^{\frac {3}{2}}}{\left (a + b x^{2}\right ) \sqrt {e + f x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(3/2)/(b*x**2+a)/(f*x**2+e)**(1/2),x)

[Out]

Integral((c + d*x**2)**(3/2)/((a + b*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)^(3/2)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d\,x^2+c\right )}^{3/2}}{\left (b\,x^2+a\right )\,\sqrt {f\,x^2+e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)^(3/2)/((a + b*x^2)*(e + f*x^2)^(1/2)),x)

[Out]

int((c + d*x^2)^(3/2)/((a + b*x^2)*(e + f*x^2)^(1/2)), x)

________________________________________________________________________________________